If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y+y^2=76
We move all terms to the left:
8y+y^2-(76)=0
a = 1; b = 8; c = -76;
Δ = b2-4ac
Δ = 82-4·1·(-76)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{23}}{2*1}=\frac{-8-4\sqrt{23}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{23}}{2*1}=\frac{-8+4\sqrt{23}}{2} $
| 12+b=26 | | 3x+7÷2=11÷2 | | 3y+14y^-6y^-9y+1-y=3y | | 3x+7÷2=11.2 | | 3×+2y=20 | | 2x^2/3=x^2 | | -5=5(t-5) | | 4a+7=3a-9 | | 13x-9=19+16+x | | -5x+(4x+7)=-93 | | 5x-4(x-7)=19 | | -3x+6(-x+6)=-9 | | -3x+6(x-8)=-81 | | -2x+4(2x+9)=72 | | -5x-2(-x-4)=-19 | | -5x-4(x-5)=70 | | -5x+5(2x-2)=35 | | -5x+5(2x-2)=32 | | 8.6+(-5)=8.3(b-2.3) | | 5x+4(-3x+4)=65 | | 30*200=x | | 5x+4(-2x+9)=18 | | 5x+4(12x+9)=18 | | -20+x=22+6x | | 5-(6-4x)=2x-5 | | (5y-6)*(4-y)=0 | | 8y^2-12y-6=8 | | (7-u)(5u+1)=0 | | 2x/2=6 | | 33+x=50 | | x=3=-x-5 | | 4+n=-9+(-9) |